On soluble-by-finite subgroups of division algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INITIAL RAMIFICATION INDEX OF NONINVARIANT VALUATIONS ON FINITE DIMENSIONAL DIVISION ALGEBRAS

Let D be a division ring with centre K and dim, D< ? a valuation on K and v a noninvariant extension of ? to D. We define the initial ramfication index of v over ?, ?(v/ ?) .Let A be a valuation ring of o with maximal ideal m, and v , v ,…, v noninvariant extensions of w to D with valuation rings A , A ,…, A . If B= A , it is shown that the following conditions are equivalent: (i) B i...

متن کامل

intersections of prefrattini subgroups in finite soluble groups

‎let $h$ be a prefrattini subgroup of a soluble finite group $g$‎. ‎in the‎ ‎paper it is proved that there exist elements $x,y in g$ such that the equality‎ ‎$h cap h^x cap h^y = phi (g)$ holds‎.

متن کامل

On normalizers of maximal subfields of division algebras

‎Here‎, ‎we investigate a conjecture posed by Amiri and Ariannejad claiming‎ ‎that if every maximal subfield of a division ring $D$ has trivial normalizer‎, ‎then $D$ is commutative‎. ‎Using Amitsur classification of‎ ‎finite subgroups of division rings‎, ‎it is essentially shown that if‎ ‎$D$ is finite dimensional over its center then it contains a maximal‎ ‎subfield with non-trivial normalize...

متن کامل

On semi-$Pi$-property of subgroups of finite group

Let $G$ be a group and $H$ a subgroup of $G$‎. ‎ $H$ is said to have semi-$Pi$-property in $G$ if there is a subgroup $T$ of $G$ such that $G=HT$ and $Hcap T$ has $Pi$-property in $T$‎. ‎In this paper‎, ‎investigating on semi-$Pi$-property of subgroups‎, ‎we shall obtain some new description of finite groups‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2005

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2005.04.024